
Oleksiuk Dmytro (aka Cr4sh)

ÁWhat do you think when you hear this term?

ÁWhat do you think when you hear this term?

ÁRustock

ÁTDSS/Alureon

ÁZeroAccess

ÁCarberp

ÁWhat do you think when you hear this term?

ÁRustock

ÁTDSS/Alureon

ÁZeroAccess

ÁCarberp

ÁMy talk about another: rootkits for the target

attacks

Á The purpose of malicious code puts certain requirements over it

Á In general, the requirements are persistence and activity hiding, but

also there is some special cases

Á Case #1: rootkits for the mass-spreading malware

ÁPrevent active infection curing by the popular anti-virus software

Á Case #2: rootkits for the target attacks

ÁPrevent active infection detection even by the professional during

forensic analysis
ÁThe main subject of this talk

ÁSpecific requirements dictate the necessity of the
specific technical solutions

ÁAll rootkits listed above in the case #1 and all
known Ⱥcyber-weaponȻ stuff are very easy
detectable

ÁWe need to design something fundamentally new
that will be good enough for the case #2

ÁBut first - let's look at the common rootkit detection

scenarios for better understanding of the task

Á In order to be working the malicious code must get execution
somehow

ÁSystem service installation or using of the less obvious auto-run

capabilities (documented or not) of OS

ǐTDL 2, Rustock, Srizbi, Stuxnet, Duqu

Á Infection of the existing executable file

ǐTDL 3, ZeroAccess, Virut

ÁOS booting control (modification of the boot code, partition table or
playing with the UEFI boot drivers and services)

ǐTDL 4, Mebroot, Olmarik, Rovnix, UEFI rootkit by @snare

http://twitter.com/snare

ÁApart from getting the execution rootkits also have
to hide the evidences of their work (we're still
talking about rootkits?)

ÁHidden objects and resources of the operating
system make the rootkit detection more easy

ÁHow exactly?

Á Step 1: collect the database (like name/ path + hash) of interesting
resources (files, system registry, boot sectors) inside the environment
of presumably infected by rootkit OS

Á Step 2: collect the same database but with the mounting of the target
OS system volume inside the environment of clear and trusted OS

Á Step 3: diff of the two databases will show us the resources that were

hidden or locked by the rootkit inside the environment of the target OS

Á Reliability is close to 100% in the absence of implementation errors
Á Very hard for to bypass such detection

Á I'm using this method successfully in the different practical cases

ÁRootkit sample: Trojan.Srizbi.cx

ÁRootkit sample: Win32.TDSS.aa

ÁRootkit sample: Rootkit.Win32.Agent.aibm

Á The malicious code also can have nothing to hide (because not
only rootkits are useful)

ÁDevelopers can masquerade the malicious module as a legitimate

program component (from OS or 3-rd party software)
ÁActually, such case is much more harder for investigation and
ÄÅÔÅÃÔÉÏÎ ÔÈÁÎ ȰÔÒÕÅ ÒÏÏÔËÉÔȱȟ ÔÈÁÔ ÈÉÄÅÓ ÁÎÙ ÆÉÌÅÓȾÐÒÏÃÅÓÓÅÓȾÒÅÇÉÓÔÒÙ
keys/etc.

Á But we still can compare collected resources database with the
some reference

ÁGood system administrator always knows, exactly what software

and drivers are installed on his servers and workstations. Find
something extraneous among known components and data is a
much than possible

Á So, for these reasons our ideal rootkit for target attacks is strictly
prohibited to use:

Á All the regular ways of auto-run
Á Existing files modification and new files creation
Á Interfere in the process of OS booting with the modification of MBR, VBR,

NTFS $Boot and so on.

Á But where should we store the malicious code and how to pass
execution into it?

Á Maybe, firmware infection is the most obvious way?

Á9ÅÓȡ ÔÈÁÔȭÓ Á ÐÏ×ÅÒÆÕÌ ÔÅÃÈÎÏÌÏÇÙ ÁÎÄ ÉÔ ÃÁÎ ÓÏÌÖÅ ÏÕÒ ÔÁÓËÓ
Á No: in practice ɀ very expensive, depends on the specific hardware and

have a lot of other limitations

Á,ÅÔȭÓ ÓÔÏÒÅ ÍÁÌÉÃÉÏÕÓ ÃÏÄÅ ÉÎÓÉÄÅ ÓÏÍÅ 2%'ͺ").!29
or REG_SZ system registry value!

Á The main goal : Windows system registry ɀ is the millions of keys and
values

Á There is no any complete documentation on all of these
Á Usually, the forensic analysis is limited by checking only a small part of

registry keys (that stores critical system settings and known auto-run
locations)

Á The main problem : how to execute a code, that located inside a

system registry value?

Á/Æ ÃÏÕÒÓÅȟ ÔÈÅ 7ÉÎÄÏ×Ó ÈÁÖÅÎȭÔ ÁÎÙ ÒÅÇÕÌÁÒ ÃÁÐÁÂÉÌÉÔÉÅÓ ÆÏÒ ÔÈÁÔ J
Á But some registry keys can contain the data that very interesting and

sensitive itself
Á Also, there are a lot of code and program components that read something

from the system registry, and, of course, such code can have vulnerabilities

Á What interesting is kept in the system registry?

Á Settings, users password hashes, certificates and secret/public keys

Á Maybe, anything else?

Á Windows ACPI driver stores a copy of the DSDT table (that was read
from the firmware) inside a system registry

Á sometimes this feature is used by enthusiasts to fix the hardware vendor

bugs

Á DSDT ɀ is the part of ACPI specification, this table stores machine-
independent subprograms, that are interpreting by ACPI driver in the
occurrence of different power events

Á ACPI spec 4.0a, Ⱥ5.2 ACPI System Description TablesȻ

Á DSDT had already got under the attention of researchers

ÁȺImplementing and Detecting an ACPI BIOS RootkitȻ (John Heasman, Black

Hat 2006)
Á I propose to modify the copy of DSDT inside the system registry, but not

inside the firmware

http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Heasman.pdf

Á DSDT can contain data objects and control methods

Á They forming a hierarchical ACPI namespace

Á Control methods are represented in the form of an AML byte-
code (ACPI Machine Language), in which compiles the programs
written in ASL (ACPI Source Language)

ÁCompilers and disassemblers are available in toolkits from Intel and

Microsoft

Á)ÔȭÓ ÐÏÓÓÉÂÌÅ ÔÏ ÂÒÏ×ÓÅ !#0) ÎÁÍÅÓÐÁÃÅ ÁÎÄ ÄÅÂÕÇ ÔÈÅ !-, ÃÏÄÅ
with the acpikd extension for WinDbg

Á AML byte-code interpreter located inside the operating system
ACPI driver (ACPI.sys on Windows)

http://www.acpi.info/toolkit.htm
http://www.acpi.info/toolkit.htm
http://www.acpi.info/toolkit.htm
http://www.acpi.info/toolkit.htm
http://www.acpi.info/toolkit.htm
http://msdn.microsoft.com/en-us/library/windows/hardware/ff538158(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff538158(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff538158(v=vs.85).aspx

Á ASL provides a lot of capabilities for working with the hardware
resources

Á OperationRegion directive (ACPI spec 4.0a, Ⱥ18.5.89 Declare Operation

RegionȻɊ can give the access to the different memory regions

ÁExample: ASL code that writes 0x1337 into the
physical memory at 0x80000000

Á Write ASL program, that generates the malicious machine code
directly into the physical memory, and then ɀ patches OS kernel
for redirecting control flow to the generated code

Á Read DSDT contents from the system registry

Á Add written program into the code of some control method, that
will be called during OS startup

Á Write modified DSDT back into the system registry

Á PROFFIT!

ÁAt the next reboot modified control method code will be interpreted

by ACPI driver and after that ɀ our malicious code will be generated
and executed

Á ASL code can work only with the physical memory, so, for accessing to
the virtual memory we need to make the address translation manually

Á Windows stores PDE/ PTE tables at the constant virtual addresses

0xC0300000/ 0xC0000000 (for x86)

Á Then we should find the address of the some kernel mode code to
patch, the using of hardcoded address is possible
Á Will work on NT 5.x
Á Will not work NT 6.x because there is a kernel-mode ASLR

Á ȣ ÂÕÔ ÉÔȭÓ ÂÅÔÔÅÒ ÔÏ ÍÏÄÉÆÙ ÔÈÅ ÃÏÄÅȟ ÔÈÁÔ ÌÏÃÁÔÅÄ ÉÎ ÔÈÅ 3ÙÓÔÅÍ#ÁÌÌ0ÁÄ

field of the _KUSER_SHARED_DATA structure

Á This structure located at the executable memory page with the constant

address 0xffdf0000 (at least ɀ up to NT 6.1 including)
Á The end of this page can be used to store the malicious code

DEMO:
vimeo.com/56595256

https://vimeo.com/56595256

ÁUnfortunately, considered DSDT modification works
fine only on the NT 5.x and gives the strange BSoD
on the NT 6.x:

ÁThe reason ɀ KeBugCheckEx call inside the ACPI.sys

